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ABSTRACT

In this paper, the performance of several spoofing mitigation techniques using multiple receive antennas is compared and
analyzed under various spoofing attack scenarios. We consider three different spoofing attack scenarios in this paper. In the
first scenario, the received power of the spoofing signal is 5 dB higher than that of the satellite signal and the spoofing signal
has a completely different code phase and doppler frequency from the satellite signal at the GNSS receiver. In the second
scenario, the received power of the spoofing signal is 5 dB higher than that of the satellite signal and the spoofing signal has
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0.45 chip delay in the code phase of the satellite signal at the GNSS receiver. In the third scenario, the received power of the
spoofing signal is 0-2 dB higher than that of the satellite signal and the spoofing signal has 0.45 chip delay in the code phase
of the satellite signal at the GNSS receiver. The uniform circular array consists of 4, 5, or 7 elements. The software-based GPS
L1 C/ A signal generator and the spoofing signals generator is designed. The software-based GPS receiver for anti-spoofing
techniques based on array antenna is also designed. As indicators for performance, the array antenna radiation pattern, the
accuracy of DoA estimation, C/NO after applying the anti-spoofing technique, and code tracking error are used. From the results,
it is confirmed that the accuracy of the DoA estimation increases as the number of antennas increases when the received power
of the spoofing signal is sufficiently higher than that of the satellite signal. However, the performance of the spoofing mitigation
technique becomes deteriorated when the received power of the spoofing signal is similar to that of the satellite signal even
though the number of antenna elements is large enough.

INTRODUCTION

GNSS signals are weak and vulnerable to interference. Among intentional interference signals, the spoofing signal has the
same structure as the GNSS signal. Due to this characteristics of spoofing signals, spoofing attacks have a more harmful effect
on GNSS receivers. Recently, various anti-spoofing techniques have been studied. Anti-spoofing technique can be divided into
single antenna based technique and multiple antenna based technique. Anti-spoofing techniques with a single antenna include
the signal power level monitoring, Time-of-Arrival (TOA) discrimination, Angle-of-Arrival (AOA) discrimination and
Receiver Autonomous Integrity Monitoring (RAIM)[1]. Anti-spoofing techniques based on array antenna are effective for
spoofing detection as well as for spoofing mitigation. So, anti-spoofing techniques with array antenna have received much
attention from both academia and industry in detecting the spoofing attack and mitigating its effect[2][3][4][5]1[6]1[7]1[8][9]. In
most studies, the performance of the anti-spoofing technique was analyzed only when the number of GNSS receive antennas
is larger than the number of signals including legitimate satellites and spoofers or the the received signal power of the spoofer
is much higher than that of the satellite signal. In practice, however, it is difficult to use an array antenna with many elements
due to limited space and complexity and the spoofer may control the transmit power so that the received power of the spoofing
signal is similar to that of the satellite signal.

In this paper, the performance of several spoofing mitigation techniques with multiple receive antennas will be compared
and analyzed under various spoofing attack scenarios. We consider three different spoofing attack scenarios in this paper. The
uniform antenna consists of 4, 5, or 7 elements. For doing this, a software-based GPS L1 C / A signal generator and a spoofing
signal generator is designed. A software-based GPS receiver for anti-spoofing techniques based on array antenna is also
designed.

GNSS SPOOFING MITIGATION TECHNIQUES BASED ON ARRAY ANTENNA

When a receiver with N array antennas receives Ma satellite signals and Ms spoof signals, the received signal is as follows:

r(t) = Sod, amsin(0) + a® B2, s5(6) + n(b). €

where a4, is the direction vector of the m-th satellite, and a® is the direction vector of the spoofing signal. n(t) is the thermal
noise added to the received signal, and each element is AWGN (Additive White Gaussian Noise) following a normal
distribution with an average of 0 and a variance of g%. s/ (t) and s;(t) denote satellite signals and spoofing signals,
respectively. It is assumed that the spoofing signal transmits several spoof signals from one spoof.

Various studies have been conducted on the spoofing signal mitigation technique using array antennas. This paper compare
and analyze three spoofing mitigation techniques in various spoofing attacks environments. The first technique is Maximum
Eigenvalue Approximation(MEA). The MEA method using eigenvalue decomposition is the simplest design. The MEA
technique using eigenvalue decomposition can be designed in the simplest of the three methods. MEA is a technique that
mitigates spoofing signals by forming nulls based on eigenvectors corresponding to the maximum eigenvalues. The covariance
of the received signal can be defined as follows:

R, = E[rr¥] =%

i [r (T (T, )
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where N means the total number of samples, and T; means the sampling frequency. Using the covariance defined in (2), the
eigenvector of the spoofing signal is estimated through eigenvalue decomposition. A null is formed based on the eigenvector
of the spoofing signal estimated. Except for this, the remaining eigenvector matrix is assumed to be the noise subspace Pn. The
spoofing signal is mitigated by projecting the received signal onto the estimated noise subspace Pn.

#(8) = Piir(t) = P (o, amsim(t) + a® T2, s5(6) + n(D)) 3)

All signals received by the receiver have their own Direction of Arrival (DoA). The accuracy of DoA estimation of the
spoofing signal has the greatest influence on the spoofing signal mitigation performance. The most representative algorithm
for estimating the DoA of a received signal is Multiple Signal Classification (MUSIC). MUSIC applies eigenvalue
decomposition in the same way as MEA and searches for the DoA of the spoofing signal. This algorithm estimates the direction
vector for all spaces considering the delay due to the position of the antenna element. This algorithm estimates the DoA of the
spoofing signal orthogonal to the signal/noise subspace. It can be estimated by the equation (4).

1
aH (Bl-,qﬁj)UnU,I;’a(Bi,(pj)

Pyysic(01, @) = 4)

where a means the direction vector of all spaces, 8; means the search range of the elevation angle, and the range is 0°-90°. ¢;
means the search range of the azimuth, and the range is 0°-180°. U,, means satellite signal/noise subspace. MUSIC determines
the angle at which eq. (4) has the maximum value as the DoA of the spoofing signal. A null space is generated using the result
of estimating the direction vector of the spoofing signal, and the equation is expressed as (5).

PO PO ~ ~\\1 ~

P =1-a(0,4)(a"(0,4)a(8,4)) a"(8.4) (5)

The spoofing signal is mitigated by using the generated null space. The author of [5] designed the C-MUSIC (Cyclic MUSIC)
algorithm using the periodicity of satellite signals to estimate the DoA of the spoofing signal. Unlike MUSIC, C-MUSIC uses
a Cyclic Autocorrelation Function (CAF) to separate the signal subspace and the noise subspace. The reason for applying CAF
is that the effect of noise can be reduced by the characteristics of the periodic signal and cyclostationarity. The satellite signal
and the spoofing signal use the same PRN code, whereas the noise is independent over time, so the expected value is statistically
zero. CAF is expressed as follows using the received signal model.

Ry = IE[r(nTs)rH (nTs - Tp)] = ZTAI/{Lil am (aﬁi)HchncAmA (Tp) +a’ (as )H ZpM=51 chzgps(Tp) + Zﬁil af (as )HRicjiS(Tp) (6)

where R4 4(T,,) and R5S,s(T,,) mean the CAF value of the m-th satellite signal and the CAF value of the p-th spoof signal,

respectively. Eigenvalue decomposition is performed for the equation defined in equation (6), and the spoofing signal is
searched for. C-MUSIC also estimates the direction vector for all spaces considering the delay due to the position of the antenna
element. And, it estimates the DoA of the spoofing signal orthogonal to the signal/noise subspace.

SIMULATION APPROACH

The simulation using the array antenna GPS C/A software receiver was performed for a total of three types of array antennas.
The types of antennas used in the paper are summarized in fig. 1. The uniform antenna consists of 4, 5, or 7 elements.
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Fig. 1. Antenna Type for simulation

The software GPS C/A receiver was implemented in MATLAB® and consists of signal acquisition and tracking units. For
simulations with software generated signals, IF digital array signals were produced and stored in binary files on a PC using the
following settings: RF front end bandwidth of 2 MHz, sampling frequency of 5 MHz, intermediate frequency of 1.4 MHz and
Satellite received power of -158 dBW. It generated signals for the three spoofing attack scenarios defined in Table 1.

Table 1. Spoofing attack scenarios with software simulated signals

Spoofing Signal

Scenario ID  Receiver movement Code delay [chip] Dopple[:;]equency Received Power
[dBW]
. N-chip
1 Fix (*N = Integer number) Random -153
2 Fix 0.45 <1Hz -153
3 Fix 0.45 <1Hz -158, -156

All scenarios assumed that the receiver was fixed. In the first scenario, the received power of the spoofing signal is 5 dB
greater than that of the satellite signal and the spoofing signal has a completely different code phase and doppler frequency
from the satellite signal at the GNSS receiver. In the second scenario, the received power of the spoofing signal is 5 dB larger
than that of the satellite signal and the spoofing signal has 0.45 chip delay in the code phase of the satellite signal at the GNSS
receiver. In the third scenario, the received power of the spoofing signal is 0-2 dB larger than that of the satellite signal and the
spoofing signal has 0.45 chip delay in the code phase of the satellite signal at the GNSS receiver.

In order to analyze the performance of the spoofing signal mitigation technique according to the spoofing attacks
environment, the simulation environment was configured as shown in Table 2. There are 9 satellite signals, and in order to
simulate the actual satellite signal reception environment, a signal was generated by slightly decreasing the received power for
a satellite with a low elevation angle. The position of the spoofer was assumed to be 130° in azimuth and 20° in elevation, and
spoofing signals were generated targeting satellites received through receiver channels 1-6. In all spoofing attack scenarios, the
start time of the anti-spoofing technique is 3 ms after the start of the simulation. The length of the signal generated for each
scenario is 500 ms.

Table 2. Simulation Set-up

# of satellites 9
GPSL1CIA Received Power -158 [dBW]
» Azimuth : 130°
. Position of Spoofer
Spoofing Elevation : 20°
Signal -
Received Power -153 [dBW]
# of spoofing signal 6
Algorithm operation start time 3 [ms]

Simulation Time 500 [ms]
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SIMULATION RESULTS

Fig. 2 shows the antenna radiation pattern when nulling is performed after MEA,

applied in an environment where scenario 1 is applied.
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Fig. 2. Antenna Radiation Pattern

From fig. 2, it can be seen that as the number of antenna elements increases, the nulls are formed in a more accurate direction.
In addition, more sophisticated and accurate nulls are formed only by applying the DoA estimation algorithm. A more
sophisticated and accurate null can be formed when the DoA estimation algorithm is applied, and the satellite signal blocking
caused by the null formation can be prevented. The MUSIC algorithm showed that the smaller the antenna element, the lower
the estimation accuracy for the elevation angle, and the C-MUSIC algorithm showed that the smaller the antenna element, the
lower the estimation accuracy for the azimuth angle. Figs. 3-5 shows the C/NO and code phase diffrence of PRN 10 after
applying the spoofing signal mitigation technique in the same environment. The code phase difference shows the difference in
the code phase after the spoofing mitigation and the code phase when the spoof signal does not exist.
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From Figure 3-5, it can be seen that as the number of antenna elements decreases, not only the spoofing signal is attenuated,
but also the surrounding satellites are attenuated. In the case of a satellite signal affected by attenuation, the C/NO performance
is rapidly degraded, and this effect causes the receiver to not properly estimate the code phase. Fig. 6 shows the antenna
radiation pattern when nulling is performed after MEA, MUSIC, and C-MUSIC techniques are applied in an environment
where scenario 2 is applied.
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Fig. 6. Antenna Radiation Pattern

Scenario 2 generates the spoofing signal more sophisticated than Scenario 1, and induces the receiver to search for a spoofing
signal instead of a satellite signal within a search cell searching for the signal. However, since the DoA estimation algorithm is
an algorithm that searches for a physical location of a signal, the mitigation performance is improved when the DoA estimation
algorithm is used as in the previous scenario. And, as the number of antenna elements increases, a null is formed in a more
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accurate direction. Figs. 7-9 shows the C/NO and code phase diffrence of PRN 10 after applying the spoofing signal mitigation
technique in the same environment.
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From Figure 7-9, it can be seen that as the number of antenna elements decreases, not only the spoofing signal is attenuated,
but also the surrounding satellites are attenuated. The PRN 10 satellite, which is located in a similar position to the spoofer, is
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affected by the spoofing mitigation technique, so that C/NO decreases and code phase tracking is not performed properly. In
particular, when a 4-th antenna is used, satellite signal reception is impossible. Since the satellite signal before passing through
the correlator has a lower power than the noise power, it is difficult to estimate the DoA of the spoofing signal as the number
of array antenna elements decreases. Figs. 10-11 show the antenna radiation pattern when nulling is performed after MEA,
MUSIC, and C-MUSIC techniques are applied in an environment where scenario 3 is applied. Each figure shows the case

where the spoofing signal received power is -158 dBW and -156 dBW.
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Fig. 11. Antenna Radiation Pattern - Spoofing Signal Received Power : -156 [dBW]

From the results shown in Fig. 10-11, it can be seen that the anti-spoofing algorithm applied before correlation does not
perform properly in a situation where the received power of the spoofing signal is similar to that of the satellite signal. When a
4-element antenna is used, the MEA technique shows similar antenna radiation patterns in figs. 10 and 11. This means that
when the number of elements of the array antenna is small, it is difficult to mitigate only the spoofing signal unless the received
power of the spoofing signal is significantly high. In particular, since the satellite signal before passing through the correlator
has a lower power than the noise power, the larger the number of antenna elements is, the more advantageous it is to detect and
mitigate the spoofing signal. Figs. 12-14 show the C/NO and code phase diffrence of PRN 10 after applying the spoofing signal
mitigation technique in the same environment.
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From figs. 12-14, it can be seen that in the environment where sophisticated spoofing signals are generated, even if the
number of antenna elements increases in the MEA technique, it is difficult to recover the original signal from the satellite
signals near the spoof. The case of using a 7-element antenna, the situation where the DoA estimation algorithm was applied
was better to recover the original signal. This means that it is necessary to estimate the location of the spoofer in the environment
where the sophisticated spoofing signals are generated rather than the simple spoofing attack environment such as Scenario 1.

CONCLUSION

In this paper, the performance of several spoofing mitigation techniques with multiple receive antennas is compared and
analyzed under various spoofing attack scenarios. The spoofing signal mitigation techniques analyzed in the paper were applied
and analyzed before correlation. In a simple spoofing attack environment such as scenario 1, applying MEA alone without DoA
estimation is sufficient to mitigate the spoofing signal. However, in the environment where sophisticated spoofing signals are
generated, even if the number of antenna elements increases in the MEA technique, it is difficult to recover the original signal
from the satellite signals near the spoof. When the receiver applied the DoA estimation algorithm (MUSIC, C-MUSIC) and
used the 7 element antenna, it showed excellent anti-spoofing performance in all spoofing attack scenarios. However, even
when the DoA estimation algorithm was used, as the number of antenna elements decreased, the spoofing signal mitigation
performance decreased. Since the satellite signal before passing through the correlator has a lower power than the noise power,
the larger the number of antenna elements is, the more advantageous it is to detect and mitigate the spoofing signal. In addition,
in the case where the received power of the spoofing signal is transmitted equal to the received power of the satellite signal,
the use of the received signal before correlation shows that the spoof signal is not properly detected even when using the DoA
estimation algorithm. Since the received signal passing through the correlator has a much larger power than the noise power,
it is easy to extract the characteristics of the spoofing signal in the same environment. Therefore, it is necessary to study a
technique for detecting and mitigation the spoofing signal using the signal after correlation.
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